Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38475439

RESUMEN

Banana peel (BP) is the primary by-product generated during banana processing which causes numerous environmental issues. This study examines the physical attributes, proximate analysis, glycoarray profiling, antioxidant abilities, and prebiotic activity of BP. The analysis demonstrated that carbohydrates constituted the primary components of BP and the glycoarray profiling indicated that BP contains multiple pectin and hemicellulose structures. BP also contained phenolic compounds, including (+)-catechin and gallic acid, flavonoid compounds, and antioxidant activities. BP demonstrated prebiotic effects by promoting the proliferation of advantageous gut bacteria while inhibiting the growth of harmful bacteria. The prebiotic index scores demonstrated that BP exhibited a greater capacity to promote the growth of beneficial bacteria in comparison to regular sugar. The study demonstrated the potential of the BP as a valuable source of dietary fibre, bioactive compounds, and prebiotics. These components have beneficial characteristics and can be utilised in the production of food, feed additives, and functional food.

2.
IUCrJ ; 11(Pt 2): 260-274, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446458

RESUMEN

The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.


Asunto(s)
Gammaproteobacteria , Oxidación-Reducción , Oxigenasas de Función Mixta , Polisacáridos
3.
J Vis Exp ; (199)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37843288

RESUMEN

Microarray polymer profiling (MAPP) is a robust and reproducible approach to systematically determine the composition and relative abundance of glycans and glycoconjugates within a variety of biological samples, including plant and algal tissues, food materials, and human, animal, and microbial samples. Microarray technology underpins the efficacy of this method by providing a miniaturized, high-throughput screening platform, allowing thousands of interactions between glycans and highly specific glycan-directed molecular probes to be characterized concomitantly, using only small amounts of analytes. Constituent glycans are chemically and enzymatically fractionated, before being sequentially extracted from the sample and directly immobilized onto nitrocellulose membranes. The glycan composition is determined by the attachment of specific glycan-recognizing molecular probes to the extorted and printed molecules. MAPP is complementary to conventional glycan analysis techniques, such as monosaccharide and linkage analysis and mass spectrometry. However, glycan-recognizing molecular probes provide insight into the structural configurations of glycans, which can aid in elucidating biological interactions and functional roles.


Asunto(s)
Glicoconjugados , Polisacáridos , Animales , Humanos , Análisis por Micromatrices/métodos , Polisacáridos/química , Espectrometría de Masas , Sondas Moleculares , Plantas/química
4.
J Hazard Mater ; 445: 130581, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055986

RESUMEN

Cadmium (Cd) accumulation is highly variable among Arabidopsis halleri populations. To identify cell wall (CW) components that contribute to the contrasting Cd accumulation between PL22-H (Cd-hyperaccumulator) and I16-E (Cd-excluder), Cd absorption capacity of CW polysaccharides, CW mono- and poly- saccharides contents and CW glycan profiles were compared between these two populations. PL22-H pectin contained 3-fold higher Cd concentration than I16-E pectin in roots, and (1→4)-ß-galactan pectic epitope showed the biggest difference between PL22-H and I16-E. CW-related differentially expressed genes (DEGs) between PL22-H and I16-E were identified and corresponding A. thaliana mutants were phenotyped for Cd tolerance and accumulation. A higher Cd translocation was observed in GALACTAN SYNTHASE1 A. thaliana knockout and overexpressor mutants, which both showed a lengthening of the RG-I sidechains after Cd treatment, contrary to the wild-type. Overall, our results support an indirect role for (1→4)-ß-galactan in Cd translocation, possibly by a joint effect of regulating the length of RG-I sidechains, the pectin structure and interactions between polysaccharides in the CW. The characterization of other CW-related DEGs between I16-E and PL22-H selected allowed to identify a possible role in Zn translocation for BIIDXI and LEUNIG-HOMOLOG genes, which are both involved in pectin modification.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Cadmio , Pectinas/química , Galactanos , Polisacáridos , Pared Celular , Raíces de Plantas
5.
Food Chem ; 410: 135379, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621331

RESUMEN

Burning of food materials during cooking can increase the difficulty in removal from solid surfaces, forming residual food soils. Using molecular probe-based technologies, the aim of this work was to elucidate the composition and relative abundance of glycans within a Burnt-On/Baked-On (BoBo) model food soil and investigate enzyme systems that may facilitate soil breakdown. Microarray Polymer Profiling identified xylan, arabinoxylan, mixed-linkage glucan and mannan as target substrates for the enzymatic cleaning of BoBo residues from surfaces. Indirect immunofluorescence microscopy revealed that burning resulted in extensive structural modifications and degradation of the three-dimensional architecture of constituent polysaccharide matrices. Results from high-throughput enzyme screening indicate that inclusion of xylan depolymerising enzymes in automatic dishwashing detergents may improve cleaning of recalcitrant, plant glycan-rich BoBo soils. Collectively, this study provides new insight into the composition and removal chemistry of complex, multi-component food soils.


Asunto(s)
Polímeros , Xilanos , Xilanos/metabolismo , Suelo , Polisacáridos/química , Análisis por Micromatrices/métodos , Microscopía Fluorescente
6.
Plant Cell Environ ; 46(5): 1472-1488, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36624682

RESUMEN

Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.


Asunto(s)
Clusia , Metabolismo Ácido de las Crasuláceas , Clusia/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis , Agua/metabolismo
7.
Biology (Basel) ; 11(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35625392

RESUMEN

Industrial wine yeast strains expressing hydrolytic enzymes were fermented on Chardonnay pomace and were shown to unravel the cell walls of the berry tissues according to the enzyme activities. The yeasts produced a native endo-polygalacturonase (Saccharomyces cerevisiae × Saccharomyces paradoxus hybrid, named PR7) and/or a recombinant endo-glucanase (S. cerevisiae strains named VIN13 END1 and PR7 END1). The impact of the enzymes during the fermentations was evaluated by directly studying the cell wall changes in the berry tissues using a Comprehensive Microarray Polymer Profiling technique. By the end of the fermentation, the endo-glucanase did not substantially modify the berry tissue cell walls, whereas the endo-polygalacturonase removed some homogalacturonan. The recombinant yeast strain producing both enzymes (PR7 END1) unravelled the cell walls more fully, enabling polymers, such as rhamnogalacturonan-I, ß-1,4-D-galactan and α-1,5-L-arabinan, as well as cell wall proteins to be extracted in a pectin solvent. This enzyme synergism led to the enrichment of rhamnogalacturonan-type polymers in the subsequent NaOH fractions. This study illustrated the potential utilisation of a recombinant yeast in pomace valorisation processes and simulated consolidated bioprocessing. Furthermore, the cell wall profiling techniques were confirmed as valuable tools to evaluate and optimise enzyme producing yeasts for grape and plant cell wall degradation.

8.
Food Res Int ; 150(Pt A): 110697, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865745

RESUMEN

Phenolic composition of young red wines has been shown to play an important role in their ageing potential. Therefore, the modulation of phenolic extraction during maceration may influence the subsequent phenolic evolution of these wines. The present work aimed to evaluate the impact of three different maceration times on the phenolic levels and evolution observed over time, using spectrophotometric and chromatography methods, and the effect on the aroma, taste, and mouthfeel sensory properties using Projective Mapping. Additionally, grape cell wall deconstruction was monitored during the extended maceration phase by GC-MS and Comprehensive Comprehensive Microarray Polymer Profiling (CoMPP). Our findings demonstrated that longer maceration times did not always correspond to an increase in wine phenolic concentration, although the level of complexity of these molecules seemed to be higher. Additionally, continuous depectination and possible solubilisation of the pectin is observed during the extended maceration which may be influencing the sensory perception of these wines. Maceration time was also shown to influence the evolution of the polymeric fraction and sensory perception of the wines.


Asunto(s)
Vitis , Vino , Bebidas Alcohólicas , Odorantes/análisis , Gusto , Vino/análisis
9.
Sci Rep ; 11(1): 21542, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728780

RESUMEN

Washed textiles can remain malodorous and dingy due to the recalcitrance of soils. Recent work has found that 'invisible' soils such as microbial extracellular DNA (eDNA) play a key role in the adhesion of extracellular polymeric substances that form matrixes contributing to these undesirable characteristics. Here we report the application of an immunostaining method to illustrate the cleaning mechanism of a nuclease (DNase I) acting upon eDNA. Extending previous work that established a key role for eDNA in anchoring these soil matrixes, this work provides new insights into the presence and effective removal of eDNA deposited on fabrics using high-resolution in-situ imaging. Using a monoclonal antibody specific to Z-DNA, we showed that when fabrics are washed with DNase I, the incidence of microbial eDNA is reduced. As well as a quantitative reduction in microbial eDNA, the deep cleaning benefits of this enzyme are shown using confocal microscopy and imaging analysis of T-shirt fibers. To the best of our knowledge, this is the first time the use of a molecular probe has been leveraged for fabric and homecare-related R&D to visualize eDNA and evaluate its removal from textiles by a new-to-laundry DNase enzyme. The approaches described in the current work also have scope for re-application to identify further cleaning technology.


Asunto(s)
Bacterias/metabolismo , Adhesión Bacteriana , ADN Bacteriano/aislamiento & purificación , Desoxirribonucleasa I/metabolismo , Vesículas Extracelulares/metabolismo , Imagen Molecular/métodos , Textiles/análisis , ADN Bacteriano/metabolismo , Textiles/microbiología
10.
Cell Surf ; 7: 100059, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34557617

RESUMEN

Rhizospheres are microecological zones at the interface of roots and soils. Interactions between bacteria and roots are critical for maintaining plant and soil health but are difficult to study because of constraints inherent in working with underground systems. We have developed an in-situ rhizosphere imaging system based on transparent soils and molecular probes that can be imaged using confocal microscopy. We observed spatial patterning of polysaccharides along roots and on cells deposited into the rhizosphere and also co-localised fluorescently tagged soil bacteria. These studies provide insight into the complex glycan landscape of rhizospheres and suggest a means by which root / rhizobacteria interactions can be non-disruptively studied.

11.
Commun Biol ; 4(1): 754, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140625

RESUMEN

The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.


Asunto(s)
Pared Celular/química , Chlorophyceae/metabolismo , Embryophyta/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Zygnematales/metabolismo , Evolución Biológica , Chlorophyceae/genética , Genoma de Planta/genética , Glicosilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Zygnematales/genética
12.
Ann Bot ; 128(5): 527-543, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34192306

RESUMEN

BACKGROUND AND AIMS: The necrotrophic fungus Botrytis cinerea infects a broad range of fruit crops including domesticated grapevine Vitis vinifera cultivars. Damage caused by this pathogen is severely detrimental to the table and wine grape industries and results in substantial crop losses worldwide. The apoplast and cell wall interface is an important setting where many plant-pathogen interactions take place and where some defence-related messenger molecules are generated. Limited studies have investigated changes in grape cell wall composition upon infection with B. cinerea, with much being inferred from studies on other fruit crops. METHODS: In this study, comprehensive microarray polymer profiling in combination with monosaccharide compositional analysis was applied for the first time to investigate cell wall compositional changes in the berries of wine (Sauvignon Blanc and Cabernet Sauvignon) and table (Dauphine and Barlinka) grape cultivars during Botrytis infection and tissue maceration. This was used in conjunction with scanning electron microscopy (SEM) and X-ray computed tomography (CT) to characterize infection progression. KEY RESULTS: Grapes infected at veraison did not develop visible infection symptoms, whereas grapes inoculated at the post-veraison and ripe stages showed evidence of significant tissue degradation. The latter was characterized by a reduction in signals for pectin epitopes in the berry cell walls, implying the degradation of pectin polymers. The table grape cultivars showed more severe infection symptoms, and corresponding pectin depolymerization, compared with wine grape cultivars. In both grape types, hemicellulose layers were largely unaffected, as was the arabinogalactan protein content, whereas in moderate to severely infected table grape cultivars, evidence of extensin epitope deposition was present. CONCLUSIONS: Specific changes in the grape cell wall compositional profiles appear to correlate with fungal disease susceptibility. Cell wall factors important in influencing resistance may include pectin methylesterification profiles, as well as extensin reorganization.


Asunto(s)
Vitis , Vino , Botrytis , Pared Celular , Frutas , Polisacáridos
13.
Food Chem ; 363: 130180, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157558

RESUMEN

Shiraz is a widely planted cultivar in many of the world's top wine regions where it is used for the production of top-quality single varietal or blended red wines. Cell wall changes during grape ripening and over-ripening have been investigated, particularly in the context of understanding berry deconstruction thereby facilitating the release of favorable compounds during winemaking. However, no information is available on cell wall changes during berry shrinkage in Shiraz. Glycan microarray technology was used to directly profile Shiraz berries for cell wall polysaccharide and glycoprotein epitopes. Skins and pulp tissues were profiled separately and revealed that whereas the skin was rich in pectins and xyloglucans, the pulp tissues were mainly composed of extensin glycoproteins. Overripe (26-28°B) berries, particularly those from the warmer region site, revealed degradation of their pectin and extensin epitopes.


Asunto(s)
Vitis , Vino , Pared Celular , Frutas , Polisacáridos , Vino/análisis
14.
Carbohydr Polym ; 261: 117866, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766354

RESUMEN

Almost all plant cells are surrounded by a wall constructed of co-extensive networks of polysaccharides and proteoglycans. The capability to analyse cell wall components is essential for both understanding their complex biology and to fully exploit their numerous practical applications. Several biochemical and immunological techniques are used to analyse cell walls and in almost all cases the first step is the preparation of an alcohol insoluble residue (AIR). There is significant variation in the protocols used for AIR preparation, which can have a notable impact on the downstream extractability and detection of cell wall components. To explore these effects, we have formally compared ten AIR preparation methods and analysed polysaccharides subsequently extracted using high-performance anion exchange chromatography (HPAEC-PAD) and Micro Array Polymer Profiling (MAPP). Our results reveal the impact that AIR preparation has on downstream detection of cell wall components and the need for optimisation and consistency when preparing AIR.


Asunto(s)
Pared Celular/química , Técnicas de Química Analítica/métodos , Células Vegetales/química , Polisacáridos/aislamiento & purificación , Arabidopsis/química , Membrana Celular/química , Cromatografía/métodos , Análisis por Micromatrices , Hojas de la Planta/química , Preparaciones de Plantas/aislamiento & purificación , Tallos de la Planta/química , Polímeros/análisis , Polímeros/aislamiento & purificación , Polisacáridos/química , /química
15.
Nat Commun ; 12(1): 1150, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608542

RESUMEN

The formation of sinking particles in the ocean, which promote carbon sequestration into deeper water and sediments, involves algal polysaccharides acting as an adhesive, binding together molecules, cells and minerals. These as yet unidentified adhesive polysaccharides must resist degradation by bacterial enzymes or else they dissolve and particles disassemble before exporting carbon. Here, using monoclonal antibodies as analytical tools, we trace the abundance of 27 polysaccharide epitopes in dissolved and particulate organic matter during a series of diatom blooms in the North Sea, and discover a fucose-containing sulphated polysaccharide (FCSP) that resists enzymatic degradation, accumulates and aggregates. Previously only known as a macroalgal polysaccharide, we find FCSP to be secreted by several globally abundant diatom species including the genera Chaetoceros and Thalassiosira. These findings provide evidence for a novel polysaccharide candidate to contribute to carbon sequestration in the ocean.


Asunto(s)
Carbono/metabolismo , Diatomeas/metabolismo , Eutrofización/fisiología , Polisacáridos/metabolismo , Anticuerpos , Ciclo del Carbono , Secuestro de Carbono , Epítopos , Glicómica , Mar del Norte , Polisacáridos/inmunología , Agua de Mar/química
16.
New Phytol ; 230(2): 669-682, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421150

RESUMEN

Metallophytes constitute powerful models for the study of metal homeostasis, adaptation to extreme environments and the evolution of naturally selected traits. Arabidopsis halleri is a pseudometallophyte which shows constitutive zinc/cadmium (Zn/Cd) tolerance and Zn hyperaccumulation but high intraspecific variability in Cd accumulation. To examine the molecular basis of the variation in metal tolerance and accumulation, ionome, transcriptome and cell wall glycan array profiles were compared in two genetically close A. halleri populations from metalliferous and nonmetalliferous sites in Northern Italy. The metallicolous population displayed increased tolerance to and reduced hyperaccumulation of Zn, and limited accumulation of Cd, as well as altered metal homeostasis, compared to the nonmetallicolous population. This correlated well with the differential expression of transporter genes involved in trace metal entry and in Cd/Zn vacuolar sequestration in roots. Many cell wall-related genes were also more highly expressed in roots of the metallicolous population. Glycan array and histological staining analyses demonstrated that there were major differences between the two populations in terms of the accumulation of specific root pectin and hemicellulose epitopes. Our results support the idea that both specific cell wall components and regulation of transporter genes play a role in limiting accumulation of metals in A. halleri at contaminated sites.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cadmio/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Italia
17.
Microorganisms ; 8(12)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260318

RESUMEN

Canola meal (CM), the protein-rich by-product of canola oil extraction, has shown promise as an alternative feedstuff and protein supplement in poultry diets, yet its use has been limited due to the abundance of plant cell wall fibre, specifically non-starch polysaccharides (NSP) and lignin. The addition of exogenous enzymes to promote the digestion of CM NSP in chickens has potential to increase the metabolizable energy of CM. We isolated chicken cecal bacteria from a continuous-flow mini-bioreactor system and selected for those with the ability to metabolize CM NSP. Of 100 isolates identified, Bacteroides spp. and Enterococcus spp. were the most common species with these capabilities. To identify enzymes specifically for the digestion of CM NSP, we used a combination of glycomics techniques, including enzyme-linked immunosorbent assay characterization of the plant cell wall fractions, glycosidic linkage analysis (methylation-GC-MS analysis) of CM NSP and their fractions, bacterial growth profiles using minimal media supplemented with CM NSP, and the sequencing and de novo annotation of bacterial genomes of high-efficiency CM NSP utilizing bacteria. The SACCHARIS pipeline was used to select plant cell wall active enzymes for recombinant production and characterization. This approach represents a multidisciplinary innovation platform to bioprospect endogenous CAZymes from the intestinal microbiota of herbivorous and omnivorous animals which is adaptable to a variety of applications and dietary polysaccharides.

18.
Nat Commun ; 11(1): 5773, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188211

RESUMEN

Beneficial modulation of the gut microbiome has high-impact implications not only in humans, but also in livestock that sustain our current societal needs. In this context, we have tailored an acetylated galactoglucomannan (AcGGM) fibre to match unique enzymatic capabilities of Roseburia and Faecalibacterium species, both renowned butyrate-producing gut commensals. Here, we test the accuracy of AcGGM within the complex endogenous gut microbiome of pigs, wherein we resolve 355 metagenome-assembled genomes together with quantitative metaproteomes. In AcGGM-fed pigs, both target populations differentially express AcGGM-specific polysaccharide utilization loci, including novel, mannan-specific esterases that are critical to its deconstruction. However, AcGGM-inclusion also manifests a "butterfly effect", whereby numerous metabolic changes and interdependent cross-feeding pathways occur in neighboring non-mannanolytic populations that produce short-chain fatty acids. Our findings show how intricate structural features and acetylation patterns of dietary fibre can be customized to specific bacterial populations, with potential to create greater modulatory effects at large.


Asunto(s)
Fibras de la Dieta/farmacología , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Metabolismo Secundario , Acetilación/efectos de los fármacos , Animales , Butiratos/metabolismo , Ciego/metabolismo , Dieta , Conducta Alimentaria/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Genoma , Masculino , Mananos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Metagenómica , Análisis de Componente Principal , Proteoma/metabolismo , ARN Ribosómico 16S/genética , Metabolismo Secundario/efectos de los fármacos , Porcinos , Madera/química
19.
Vaccines (Basel) ; 8(3)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679889

RESUMEN

The expression of Vitis vinifera polygalacturonase inhibiting protein 1 (VviPGIP1) in Nicotiana tabacum has been linked to modifications at the cell wall level. Previous investigations have shown an upregulation of the lignin biosynthesis pathway and reorganisation of arabinoxyloglucan composition. This suggests cell wall tightening occurs, which may be linked to defence priming responses. The present study used a screening approach to test four VviPGIP1 and four NtCAD14 overexpressing transgenic lines for cell wall alterations. Overexpressing the tobacco-derived cinnamyl alcohol dehydrogenase (NtCAD14) gene is known to increase lignin biosynthesis and deposition. These lines, particularly PGIP1 expressing plants, have been shown to lead to a decrease in susceptibility towards grey rot fungus Botrytis cinerea. In this study the aim was to investigate the cell wall modulations that occurred prior to infection, which should highlight potential priming phenomena and phenotypes. Leaf lignin composition and relative concentration of constituent monolignols were evaluated using pyrolysis gas chromatography. Significant concentrations of lignin were deposited in the stems but not the leaves of NtCAD14 overexpressing plants. Furthermore, no significant changes in monolignol composition were found between transgenic and wild type plants. The polysaccharide modifications were quantified using gas chromatography (GC-MS) of constituent monosaccharides. The major leaf polysaccharide and cell wall protein components were evaluated using comprehensive microarray polymer profiling (CoMPP). The most significant changes appeared at the polysaccharide and protein level. The pectin fraction of the transgenic lines had subtle variations in patterning for methylesterification epitopes for both VviPGIP1 and NtCAD14 transgenic lines versus wild type. Pectin esterification levels have been linked to pathogen defence in the past. The most marked changes occurred in glycoprotein abundance for both the VviPGIP1 and NtCAD14 lines. Epitopes for arabinogalactan proteins (AGPs) and extensins were notably altered in transgenic NtCAD14 tobacco.

20.
Methods Mol Biol ; 2149: 327-337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617943

RESUMEN

Plant cell walls are composed of a number of coextensive polysaccharide-rich networks (i.e., pectin, hemicellulose, protein). Polysaccharide-rich cell walls are important in a number of biological processes including fruit ripening, plant-pathogen interactions (e.g., pathogenic fungi), fermentations (e.g., winemaking), and tissue differentiation (e.g., secondary cell walls). Applying appropriate methods is necessary to assess biological roles as for example in putative plant gene functional characterization (e.g., experimental evaluation of transgenic plants). Obtaining datasets is relatively easy, using for example gas chromatography-mass spectrometry (GC-MS) methods for monosaccharide composition, Fourier transform infrared spectroscopy (FT-IR) and comprehensive microarray polymer profiling (CoMPP); however, analyzing the data requires implementing statistical tools for large-scale datasets. We have validated and implemented a range of multivariate data analysis methods on datasets from tobacco, grapevine, and wine polysaccharide studies. Here we present the workflow from processing samples to acquiring data to performing data analysis (particularly principal component analysis (PCA) and orthogonal projection to latent structure (OPLS) methods).


Asunto(s)
Pared Celular/química , Células Vegetales/química , Biopolímeros/análisis , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...